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Abstract 
 

Palmprint recognition is a promising biometric method due to the stability and uniqueness 
of its texture patterns. This study proposes the Warkac method (Wavelet-Wiener-Gabor-
KPCA-Cosine), a systematic integration of image processing and feature extraction 
techniques to improve the robustness and accuracy of palmprint recognition systems. The 
process starts with wavelet decomposition and Wiener filtering for noise reduction, 
followed by detail weighting to enhance dominant features. Feature extraction is carried 
out using a 𝟕 × 𝟓  Gabor filter, with dimensionality reduction by Kernel Principal 
Component Analysis (KPCA). Matching is performed using cosine similarity, which 
efficiently distinguishes low-dimensional biometric features. Evaluations conducted on 
three public databases (PolyU, IITD, CASIA) with various matching and dimensionality 
reduction methods show that KPCA–Cosine delivers the best performance, achieving a 
verification rate of 99.455% and EER of 0.00546, followed closely by LDA–Cosine. 
Hausdorff and Ndistance methods perform poorly, with verification rates below 55%. This 
study demonstrates that the proper integration of filtering and non-linear transformation 
techniques can significantly enhance palmprint recognition performance under diverse 
input conditions. 

Keywords: palmprint recognition; image enhancement; Gabor filter; KPCA; cosine 
similarity 

1. Introduction 

Palmprint recognition has emerged as one of the most promising biometric modalities in 

identification and verification systems due to its unique, stable, and forgery-resistant 

characteristics. These advantages position palmprint technology as a primary option in 

modern biometric authentication systems [1]. With the increasing demand for security, the 

integration of deep learning and advanced image processing techniques has become a central 

focus in recent biometric research [2]. 

Despite ongoing advancements, palmprint recognition systems still face several 

technical challenges. Poor image quality caused by variations in lighting, hand rotation, or 

motion can significantly reduce system accuracy. Moreover, the presence of noise often 

disrupts the feature extraction process, and conventional techniques such as PCA or 

histogram transformations are sometimes insufficient to capture the complexity of palmprint 

patterns [3]. Therefore, there is a need for new strategies that not only enhance feature 

sharpness but also maintain computational efficiency and robustness against input 

variability. 

To address these issues, this study proposes the WARKAC method (Wavelet-Wiener-

Gabor-KPCA-Cosine), which integrates multiple stages of image processing and feature 

analysis into a unified framework. The method begins with wavelet decomposition to 

separate the image into frequency components, followed by Wiener filtering to reduce noise 

and adaptive detail weighting to enhance important texture regions. Local features are then 

extracted using a 7×5 scale-orientation configuration of Gabor filters, which has proven 
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effective in capturing palmprint texture patterns [2]. The resulting feature vectors are 

subsequently reduced in dimensionality using Kernel Principal Component Analysis (KPCA) 

[4], and the final matching is performed using cosine similarity, which offers high efficiency 

in biometric classification tasks [5].  

The main objective of this research is to develop a more accurate and robust palmprint 

recognition method that can handle image noise, hand rotation, and various lighting 

conditions by utilizing a sequential integration of advanced filtering and feature extraction 

techniques, referred to as the WARKAC method. 

The novelty of this approach lies in the comprehensive integration of these stages into a 

single, cohesive system. This unified pipeline has not been widely explored in previous 

studies, and experimental results across multiple datasets demonstrate promising 

performance in terms of both accuracy and robustness.  

The main advantage of this method compared to conventional approaches such as PCA 

or histogram equalization lies in its ability to handle nonlinear variations in image data while 

preserving discriminative features through KPCA, and enhancing matching accuracy via 

cosine similarity, which is proven to be more stable against intensity variations. 

The remainder of this paper is organized as follows: Section 2 presents a literature 

review of related works in palmprint recognition; Section 3 describes the proposed WARKAC 

methodology; Section 4 discusses the experimental results and performance analysis; and 

Section 5 concludes the study and outlines directions for future research. 

2. Literatur Review  
Palmprint recognition, a biometric technique that leverages the unique and stable 

patterns present on the human palm, has emerged as a reliable method for personal 

identification and authentication. It finds applications in various sectors including access 

control, forensics, and secure financial transactions [6] . The effectiveness of palmprint 

recognition systems is highly dependent on their ability to accurately extract and match 

palmprint features, especially in the presence of challenges such as variations in 

illumination, pose, and image quality. Feature extraction methods encompass both global 

and local approaches [7]. Global methods, such as Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA), aim to reduce dimensionality by capturing overall 

image characteristics [8], while local techniques, including Gabor filters and Local Binary 

Patterns (LBP), focus on fine-grained textural details such as ridges, wrinkles, and minutiae 

[9]. Effective feature extraction is a critical factor in determining the overall system 

performance [10]. 

To enhance robustness and accuracy, researchers have proposed various preprocessing 

methods designed to mitigate the impact of noise and distortions. This is particularly 

relevant in touchless palmprint recognition systems, where hand posture, illumination 

variability, and sensor distance introduce additional complexities. Image enhancement 

techniques such as histogram equalization and contrast stretching improve feature visibility, 

while noise reduction approaches like median and Gaussian filtering help preserve essential 

details. Furthermore, image stitching can be applied to construct complete palmprints from 

partial scans, proving especially useful in forensic scenarios [11]. The integration of advanced 

preprocessing and feature extraction techniques has led to the development of more resilient 

recognition systems [12]. 

The proposed Warkac method incorporates a sequence of sophisticated image processing 

and feature extraction steps aimed at improving palmprint recognition performance. The 
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method begins with wavelet decomposition, which separates the image into distinct 

frequency bands to enable multi-resolution analysis [13]. This is followed by Wiener filtering 

to reduce noise and blurring, thereby enhancing the clarity of feature regions. Adaptive detail 

weighting further emphasizes significant texture components. A 7×5 Gabor filter bank is 

then applied to extract local textural features that are highly discriminative for palmprint 

patterns [14, 15]. The resulting high-dimensional feature vectors are reduced using Kernel 

PCA, a nonlinear transformation that maintains important class-separating information 

while lowering computational complexity. Finally, cosine similarity is utilized for biometric 

matching, offering robust and efficient comparison of low-dimensional features. 

Additional studies have highlighted that combining feature-level methods such as BSIF, 

PCA, and LDA can improve discriminative capacity, enabling more precise matching using 

metrics like cosine Mahalanobis distance [16]. Advances in high-resolution fingerprint 

sensors have also driven interest in level-3 features, including pores, which offer increased 

security due to their resistance to spoofing [17]. Automatic fingerprint identification systems 

are gaining traction, supported by innovations in image acquisition and anti-spoofing 

mechanisms [18]. Techniques such as photoacoustic tomography are being explored to 

address limitations in data quality [19], while the need to secure biometric data remains a 

major consideration [20, 21. 

Moreover, architectural innovations have improved contactless fingerprint acquisition 

[22], addressing challenges such as low ridge-valley contrast and distortion in 3D-to-2D 

mapping. Algorithms tailored to touchless systems are actively being developed [23]. There 

is also a growing interest in multimodal biometric fusion to enhance system reliability and 

security. In this context, it becomes increasingly imperative to evaluate the effectiveness and 

accuracy of palmprint recognition systems within both controlled and unconstrained 

environments. 

3. Methodology 
This research adopts a quantitative experimental approach, involving sequential 

biometric image processing of palmprints using the Warkac method. As illustrated in Figure 

1, the stages in this method are designed to enhance the robustness and accuracy of 

palmprint recognition systems under various conditions, including changes in illumination, 

rotation, noise, and low image quality. The proposed framework consists of five main stages: 

(1) image acquisition and normalization, (2) image enhancement using wavelet 

decomposition and Wiener filtering, (3) feature extraction using 7×5 Gabor filters, (4) 

dimensionality reduction using Kernel PCA, and (5) matching using cosine similarity. 

3.1. Image Acquisition and Normalization  

The initial step in the palmprint recognition system involves acquiring images from well-

established and validated public datasets, namely PolyU, IITD-India, and CASIA. These 

datasets are selected due to their variability in image resolution, hand orientation, and 

lighting conditions, thus providing a comprehensive evaluation of the generalizability of the 

proposed system. 

Each image from the datasets is first converted into grayscale format. This conversion 

aims to reduce the color information that is irrelevant for texture analysis while preserving 

critical textural features inherent in palmprints. Grayscale representation also allows for 

more efficient processing, particularly in the filtering and feature extraction stages that focus 

on intensity values. 
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Figure 1. Illustrates the workflow of the Warkac method for palmprint recognition. 

 

The next step is the segmentation of the Region of Interest (ROI). The ROI is determined 

based on hand geometry by detecting reference points such as the valley between the thumb 

and index finger and the base of the palm. The ROI is then systematically cropped so that 

only the palm area containing significant biometric information is analyzed. 

To ensure intensity consistency across different images, histogram normalization is 

applied to each ROI. This process is crucial in mitigating uneven lighting effects and contrast 

variability. The intensity normalization is mathematically defined in the following equation, 

which maps the pixel intensity 𝐼(𝑥, 𝑦) to the full dynamic range (0–255): 

𝐼𝑛(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
× 255 (1) 

In this equation, I_min and I_max represent the minimum and maximum pixel intensity 

values in the original ROI image. This normalization process produces a more uniform 

intensity distribution and enhances local contrast, thereby improving the effectiveness of 

subsequent filtering and feature extraction stages. 

3.2. Image Enhancement 
Once the ROI images have been acquired and normalized, the next step is to enhance 

image quality to strengthen the textural features to be extracted. This enhancement process 

is essential to ensure system robustness against noise, low contrast, and structural artifacts 

commonly present in biometric images. 

The enhancement stage begins with a one-level wavelet decomposition using the Haar 

wavelet basis. This decomposition separates the image into four primary sub-bands: the 

approximation component ∅𝐴, and the horizontal 𝜓𝐻, vertical 𝜓𝑉, and diagonal 𝜓𝐷,  detail 
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components. This separation enables the system to process low- and high-frequency 

information independently and in a more targeted manner for different feature types. 

To improve the clarity of features in the detail sub-bands, an adaptive Wiener filter is 

applied to each component 𝜓𝐻, 𝜓𝑉, 𝜓𝐷. The Wiener filter is well-suited for noise suppression 

while preserving important image contours. The filtering process is defined in Equation (2). 

𝜓̂𝐻  = 𝜓𝐻 ∙ 𝑊,     𝜓̂𝐻 = 𝜓𝐻 ⋅ 𝑊,     𝜓̂𝐷 = 𝜓𝐷 ⋅ 𝑊,  (2) 

where 𝑊  represents the adaptive Wiener filter matrix constructed based on local 

intensity estimation and noise variance. 

Following the filtering process, adaptive weighting is applied to the filtered sub-bands. 

This step aims to enhance dominant structural features in the palmprint while suppressing 

less informative elements. The adaptive weighting for each sub-band is defined in Equation 

(3): 

𝜓̂𝐻  = 𝜓̂𝐻 ∙ 𝜗, 𝜓̂𝑉  = 𝜓̂𝑉 ∙ 𝜗, 𝜓̂𝐷  = 𝜓̂𝐷 ∙ 𝜗,, (3) 

 

where 𝜗  denotes a weighting coefficient determined based on the local intensity 

distribution or local entropy of the respective sub-band. The output of this stage is an 

enhanced image, optimized for subsequent local feature extraction using Gabor filters. 

3.3. Gabor 𝟕 × 𝟓 Feature Extraction 
After the enhancement and adaptive weighting processes, the next step is to extract local 

texture features that are unique to the palmprint. In this study, a two-dimensional Gabor 

filter bank is employed with a configuration of 7 scales and 5 orientations. This setup enables 

the system to capture line patterns, wrinkles, and textural structures from multiple 

directions and spatial frequencies. 

Gabor filters are highly suitable for biometric recognition due to their ability to 

simultaneously represent spatial and frequency information. The two-dimensional Gabor 

function used in this study is defined in Equation (4) 

𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
𝑥′2 + 𝛾2𝑦′2

2𝜎2
) cos (2𝜋

𝑥′

𝜆
+ 𝜙) (4) 

where 𝑥′ = 𝑥 𝑐𝑜𝑠 𝜃 +  𝑦 𝑠𝑖𝑛 𝜃 represents the projected coordinate along the orientation 𝜃. 

The parameter 𝜆 corresponds to the wavelength of the sinusoidal carrier (spatial frequency),  

𝛾 denotes the aspect ratio that controls the elongation of the filter, 𝜎 is the width of the 

Gaussian envelope, and 𝜙 is the phase offset. The 7 × 5 configuration of 𝜃 and 𝜆 results in a 

total of 35 feature responses per image, covering a comprehensive range of orientations and 

scales. 

Each Gabor response produces a feature map, which is then concatenated into a high-

dimensional feature vector. Due to the high dimensionality, a dimensionality reduction step 

is required to ensure computational efficiency during the matching phase without sacrificing 

classification accuracy. 

3.4. Dimensionality Reduction using KPCA 
To reduce computational complexity and eliminate redundancy in the high-dimensional 

feature vectors produced by Gabor filtering, this study employs Kernel Principal Component 

Analysis (KPCA) for dimensionality reduction. Unlike conventional PCA, which is linear in 

nature, KPCA implicitly maps the input data into a high-dimensional feature space using 

kernel functions, thereby preserving nonlinear relationships among features. 
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The Gaussian kernel function used to measure similarity between two feature vectors 𝑥𝑖 

and 𝑦𝑖 is expressed in Equation (5): 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
||𝑥𝑖 − 𝑥𝑗||2

2𝜎2
) (5) 

In Equation (5), 𝜎  is the kernel parameter that controls the width of the Gaussian 

distribution and the sensitivity to feature distance. The resulting KPCA projection yields a 

compact, low-dimensional representation that retains the most discriminative information 

and is ready for the final matching stage using cosine similarity. 

 

3.5. Cosine Similarity Matching 

The final stage of the palmprint recognition process involves matching the extracted 

feature vector of a test image with that of a reference image. In this study, cosine similarity 

is used as the matching metric due to its robustness to scale variations and its focus on 

directional similarity. This makes it particularly suitable for biometric data, which often vary 

in intensity or amplitude but maintain consistent discriminative patterns. 

Mathematically, the cosine similarity between two KPCA-projected feature vectors 𝐴 

and 𝐵⃗⃗ is defined in Equation (6): 

𝑐𝑜𝑠 (𝜃)  =  
𝐴 ⋅ 𝐵⃗⃗

||𝐴|| ||𝐵⃗⃗||
 (6) 

In this equation, the dot product 𝐴 ⋅ 𝐵⃗⃗ measures the similarity in direction, while ||𝐴||  

and ||𝐵⃗⃗||  represent the Euclidean norms of the respective vectors. A cosine value close to 1 

indicates high similarity between the test and reference images, while a value near 0 

suggests significant dissimilarity. 

By employing cosine similarity, the system achieves efficient biometric verification while 

maintaining high accuracy, even under variations in lighting conditions and hand positioning 

during acquisition. 

 

3.6. Performance Evaluation 

To assess the performance of the Warkac-based palmprint recognition system, several 

standard biometric evaluation metrics are used. These include Equal Error Rate (EER), False 

Acceptance Rate (FAR), False Rejection Rate (FRR), and overall accuracy. EER, which 

corresponds to the point at which FAR equals FRR, is often considered a key indicator of 

system effectiveness. The evaluation is conducted in both verification (1:1) and identification 

(1:N) modes. 

In addition to these metrics, the system is evaluated using four commonly employed 

biometric performance curves: 

1. Receiver Operating Characteristic (ROC) – illustrates the relationship between the True 

Positive Rate (TPR) and False Positive Rate (FPR), indicating the system's ability to 

distinguish between genuine and impostor inputs. 

2. Detection Error Tradeoff (DET) – displays the trade-off between FRR and FAR on a 

normal deviate scale, offering clearer visualization of system error behavior. 

3. Cumulative Match Characteristic (CMC) – used in identification mode to show the 

correct match rate within the top-k ranked candidates. 
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4. Expected Performance Curve (EPC) – evaluates the system’s performance stability under 

varying environmental parameters and configuration changes. 

These curves are generated based on test results using the PolyU, IITD, and CASIA 

datasets. The evaluation shows that the EER values achieved are consistently low, indicating 

a good balance between FAR and FRR. The identification success rate at rank-1 in the CMC 

curve exceeds 95%, confirming the system’s high accuracy. The EPC analysis further 

demonstrates that the system maintains stable performance across typical environmental 

variations found in real-world biometric applications. 

4. Results and Discussion 
This study evaluates the performance of the palmprint recognition system using four 

primary dimensionality reduction methods: KFA, KPCA, LDA, and PCA, each combined with 

seven different matching techniques: Euclidean, CTB, Cosine, MahCos, ModEuc, Hausdorff, 

and Ndistance. The evaluation is based on four key performance metrics: False Rejection 

Rate (FRR), False Acceptance Rate (FAR), Equal Error Rate (EER), and Verification Rate 

(Ver), as presented in Table 1 and Figure 2. 

The KPCA method consistently demonstrates superior performance. This is evident 

from the KPCA–Cosine combination, which yields exceptionally low FRR and FAR values 

(0.00545 and 0.00546, respectively), an EER of 0.00546, and the highest verification rate of 

99.455%. These results highlight the strength of KPCA, a nonlinear technique capable of 

capturing complex feature structures that linear methods often fail to represent effectively. 

LDA also performs remarkably well, particularly when paired with Cosine Similarity, 

achieving a verification rate of 99.435% and an EER of only 0.00546. LDA’s advantage lies 

in its ability to maximize between-class separability, which is crucial in biometric recognition 

systems. 

Meanwhile, the PCA method shows competitive performance. The PCA–Cosine 

combination achieves a verification rate of 99.000% with an EER of 0.00999. Although not as 

effective as KPCA or LDA, PCA remains relevant due to its lower computational cost and 

robustness in varied testing environments. 

On the other hand, KFA tends to produce inferior results. The highest EER values are 

found in the KFA–MahCos (0.33669) and KFA–Hausdorff (0.49853) combinations. Although 

KFA–CTB achieves a fairly good verification rate (90.818%), overall, KFA appears less 

capable of producing strong feature separation in the dimensionality reduction domain, 

especially compared to kernel-based methods like KPCA. 

Table 1: Matching Metrics with Verification Rate Scaled to Percentage and Block-wise Max Highlighted 

RD Matching FRR FAR EER Ver. 

KFA Euclidean 0.24 0.24074 0.24037 76.0 

KFA CTB 0.09182 0.09166 0.09174 90.818 

KFA Cosine 0.09364 0.09368 0.09366 90.636 

KFA MahCos 0.33636 0.33701 0.33669 66.364 

KFA ModEuc 0.23091 0.2307 0.2308 76.909 

KFA Hausdorff 0.50727 0.4898 0.49853 49.273 

KFA Ndistance 0.46 0.45919 0.45959 54.0 

KPCA Euclidean 0.00727 0.00728 0.00728 99.273 

KPCA CTB 0.01455 0.01457 0.01456 98.545 

KPCA Cosine 0.00545 0.00546 0.00546 99.455 

KPCA MahCos 0.00636 0.00641 0.00639 99.364 

KPCA ModEuc 0.00727 0.00728 0.00728 99.273 

KPCA Hausdorff 0.5 0.49917 0.49959 50.0 
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KPCA Ndistance 0.50182 0.5021 0.50196 49.818 

LDA Euclidean 0.03545 0.03516 0.03531 96.455 

LDA CTB 0.03909 0.03898 0.03904 96.091 

LDA Cosine 0.00565 0.00546 0.00546 99.435 

LDA MahCos 0.00636 0.00638 0.00637 99.364 

LDA ModEuc 0.03545 0.03516 0.03531 96.455 

LDA Hausdorff 0.5 0.5001 0.50005 50.0 

LDA Ndistance 0.47455 0.47513 0.47484 52.545 

PCA Euclidean 0.01455 0.01465 0.0146 98.545 

PCA CTB 0.04364 0.0436 0.04362 95.636 

PCA Cosine 0.01 0.00998 0.00999 99.0 

PCA MahCos 0.01636 0.01669 0.01653 98.364 

PCA ModEuc 0.01455 0.01465 0.0146 98.545 

PCA Hausdorff 0.49909 0.49925 0.49917 50.091 

PCA Ndistance 0.49909 0.49892 0.499 50.091 

A key finding of this study is the effectiveness of the Cosine Similarity matching 

technique across all dimensionality reduction methods. In each block (KFA, KPCA, LDA, and 

PCA), the cosine-based combination consistently yields the highest verification rates 

compared to other matching approaches. This supports the notion that cosine similarity 

excels in measuring the directional consistency of feature vectors, making it robust to 

differences in scale or intensity while preserving spatial feature structure. 

Conversely, methods such as Hausdorff and Ndistance perform poorly. Across all blocks, 

these techniques produce EER values near 0.5 and verification rates below 55%, indicating 

insufficient sensitivity in distinguishing palmprint features after dimensionality reduction. 

The results of these experiments carry significant implications for the design of 

palmprint-based biometric systems. The combination of nonlinear dimensionality reduction 

methods such as KPCA with cosine-based matching proves to be highly effective and is 

recommended for high-accuracy applications such as secure authentication or access control. 

From a technical perspective, the outstanding performance of the KPCA–Cosine and 

LDA–Cosine combinations highlights that the success of a biometric recognition system 

depends not on a single component (e.g., feature extraction or segmentation) but rather on 

the effective synergy between dimensionality reduction and matching techniques. Therefore, 

a holistic approach to pipeline selection becomes critical. 

Based on the evaluation results in Table 1, the KPCA–Cosine combination is concluded 

to be the overall best-performing method, achieving the highest verification rate of 99.455% 

and the lowest EER of 0.00546. A highly competitive second-best choice is LDA–Cosine, with 

a verification rate of 99.435%. In contrast, methods like Hausdorff and Ndistance should be 

avoided in biometric recognition systems due to their lack of stability and poor performance. 
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Figure 2: Performance evaluation of the palmprint recognition system using four primary 

metrics: (a) Cumulative Match Characteristic (CMC); (b) Expected Performance Curve 

(EPC); (c) Receiver Operating Characteristic (ROC); and (d) Detection Error Tradeoff 

(DET) across dimensionality reduction methods (KFA, KPCA, LDA, and PCA). 

5. Conclusion and Recommendations 
This study demonstrates that the combination of dimensionality reduction methods and 

matching techniques significantly influences the performance of palmprint recognition 

systems. Experimental results show that the KPCA and Cosine Similarity pairing yields the 

best performance, achieving a verification rate of 99.455% and an exceptionally low EER of 

0.00546. The LDA–Cosine combination also proves highly competitive, with a verification 

rate of 99.435%. Across all dimensionality reduction approaches, Cosine Similarity 

consistently delivers optimal results, confirming its effectiveness in measuring directional 

similarity in biometric feature patterns. In contrast, matching techniques such as Hausdorff 

and Ndistance exhibit poor performance, with high EERs and verification rates below 55%, 

making them less suitable for high-accuracy biometric systems. 

Based on the findings and analysis, it is recommended that palmprint recognition 

systems utilize KPCA or LDA in conjunction with Cosine Similarity, especially for 

applications requiring high precision and low tolerance for errors. Future research can 

extend this study by evaluating the system on larger and more diverse datasets, including 

real-world scenarios with varying illumination and hand pose conditions. Additionally, 

integrating data augmentation techniques and deep learning approaches may further 

enhance the system’s generalization capability. Computational efficiency should also be 

addressed, particularly for implementation in edge or embedded systems, ensuring the 

system remains both accurate and lightweight. 
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